A Simulation Approach to Statistical Estimation of Multiperiod Optimal Portfolios

نویسنده

  • Hiroshi Shiraishi
چکیده

This paper discusses a simulation-based method for solving discrete-time multiperiod portfolio choice problems under AR 1 process. The method is applicable even if the distributions of return processes are unknown. We first generate simulation sample paths of the random returns by using AR bootstrap. Then, for each sample path and each investment time, we obtain an optimal portfolio estimator, which optimizes a constant relative risk aversion CRRA utility function. When an investor considers an optimal investment strategy with portfolio rebalancing, it is convenient to introduce a value function. The most important difference between single-period portfolio choice problems and multiperiod ones is that the value function is time dependent. Our method takes care of the time dependency by using bootstrapped sample paths. Numerical studies are provided to examine the validity of our method. The result shows the necessity to take care of the time dependency of the value function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بهینه‌سازی سبد سهام در چارچوب ارزش در معرض خطر: مقایسه روش‌های MS-GARCH و بوت استرپینگ

The main goal of this research is to calculate VaR index with parametric Markov-Switching GARCH approach for accepted companies in Tehran Stock Exchange and also selecting the optimal portfolio of their stocks. To calculate the index, data and information of weekly stock price of 10 representative firms during the period 2008-2014 has been used which account for 332 working weeks.The results fr...

متن کامل

Outperformance Testing of a Dynamic Assets Portfolio Selection Supplemented with a Continuous Paths Levy Process

This study aims at getting a better performance for optimal stock portfolios by modeling stocks prices dynamics through a continuous paths Levy process. To this end, the share prices are simulated using a multi-dimensional geometric Brownian motion model. Then, we use the results to form the optimal portfolio by maximizing the Sharpe ratio and comparing the findings with the outputs of the conv...

متن کامل

Multiperiod Mean-Variance Efficient Portfolios with Endogenous Liabilities

We study the optimal policies and mean-variance frontiers (MVF) of a multiperiod mean-variance optimization of assets and liabilities (AL). This makes the analysis more challenging than for a setting based on purely exogenous liabilities, in which the optimization is only performed on the assets while keeping liabilities fixed. We show that, under general conditions for the joint AL dynamics, t...

متن کامل

Vast Portfolio Selection with Gross-exposure Constraints().

We introduce the large portfolio selection using gross-exposure constraints. We show that with gross-exposure constraint the empirically selected optimal portfolios based on estimated covariance matrices have similar performance to the theoretical optimal ones and there is no error accumulation effect from estimation of vast covariance matrices. This gives theoretical justification to the empir...

متن کامل

Asset Allocation and Risk Assessment with Gross Exposure Constraints for Vast Portfolios

Markowitz (1952, 1959) laid down the ground-breaking work on the mean-variance analysis. Under his framework, the theoretical optimal allocation vector can be very different from the estimated one for large portfolios due to the intrinsic difficulty of estimating a vast covariance matrix and return vector. This can result in adverse performance in portfolio selected based on empirical data due ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ADS

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012